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bounding the fields 11, etc., are determined from the values of p and u at 
the intersections of the corresponding r characteristics . 

.A. fmther application of the weak 
shock approximation is shown in 
Fig. 13, where a common experi­
mental problem is described in the 
(x, t) and (p, u) planes. .A. pressme­
free flyer plate with uniform velocity 
w collides at t = 0 with a stationary 
pressme-free target, producing shock 
waves which travel forward into the 
target and backward into the flyer. 
The shock in the flyer reflects from 
the back face as a rarefaction, and 
there is subsequently a succession of 
reflections between free smface and 
interface which ultimately bring the 
flyer to a stop. The sequence of 
states, preserving continuity of u 
and p, is shown in the figme. The 
time between reflections is twice the 
travel time through the flyer, so the 
time to effectively stop the flyer 
can be estimated. 

4. - Elastic-plastic solids. 
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Fig. 13. - Flyer plate eolliiling with target. 

Much of the material in the preceding Sections has been couched in the 
language of fluids, though it applies equally well to solids, and has made but 
little reference to the explicit material properties involved. In this Section 
we become more specific about materials and examine more explicitly prop­
agation effects in these models. 

It must be recognized at the outset that there are no physically complete 
descriptions of the thermomechanical properties of solids. Hooke's law of 
elasticity is commonly used for small strains in metals and brittle solids, 
though there are materials to which it does not apply. Some materials are 
viscoelastic even at small strains, and the proper description of such mate­
rials is subject to current research. All solids fail through flow or fracture at 
some stress, and above this level, Hooke's law is totally improper. A satis­
factory theory of fractme is far from realization; and the theory of plastic 
failme, while far advanced compared to fractme, is still logically incomplete 
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and is often at odds with experimental results. However, the theory of plas­
ticity is more completely formulated than other models of anelasticity, and 

its applications in shock propagation 
will be discussed here. 
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Fig. 14. - a) A parallelepiped of initial 
length Zo has been compressed Ul,iaxi­
ally to length x. b) Shess-strain rela-

We restrict ourselves to the case of 
uniaxial strain existing in plane shock 
waves. We suppose a small element of 
volume to be compressed in the x-direc­
tion only and consider the relations 
between stress and strain. The nota-
tion used is shown in Fig. 14 a) and 
the expected stress-strain relation in a 
cycle of compression and rarefaction 
is shown in Fig. 14 b). Principal co­
ordinates of the stress and strain ma­
trices are (x, y, z) with x the direction 
of shock wave propagation. In order 
to maintain the condition of uniaxial 
strain while p", is applied, p" and P. 
must be adjusted so as to maintain the 
lateral dimensions unchanged. Sym­
metry requires that p" = P •. 

The most common assumptions of 
elasto-plasticity are: 

tions for the sample of Fig. 14 a). i) Material response is elastic as 
long as deformation stresses do not 

exceed a characteristic value. The most commonly used criterion of failure 
is the von Mises condition 

(41a) 

where Y is the yield stress in simple tension. In uniaxial strain this becomes 

(41b) Ip,,-PIlI ' Y. 

If the inequality applies, the material is elastic and satisfies Hooke's law: 

(42a) 

(42b) 

(420) 

p" = AO + 2/U311 , 


